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mfp
Multivariable Fractional Polynomials

by Axel Benner

Introduction

The mfp package is targeted at the use of multivari-
able fractional polynomials for modelling the influ-
ence of continuous, categorical and binary covari-
ates on the outcome in regression models, as in-
troduced by Royston and Altman (1994) and mod-
ified by Sauerbrei and Royston (1999). It combines
backward elimination with a systematic search for
a ‘suitable’ transformation to represent the influ-
ence of each continuous covariate on the outcome.
The stability of the models selected was investigated
in Royston and Sauerbrei (2003). Briefly, fractional
polynomials models are useful when one wishes to
preserve the continuous nature of the covariates in
a regression model, but suspects that some or all of
the relationships may be non-linear. At each step of
a ‘backfitting’ algorithm mfp constructs a fractional
polynomial transformation for each continuous co-
variate while fixing the current functional forms of
the other covariates. The algorithm terminates when
no covariate has to be eliminated and the functional
forms of the continuous covariates do not change
anymore.

In regression models often decisions on the selec-
tion and the functional form of covariates must be
taken. Although other choices are possible, we pro-
pose to use P-values to select models. With many
covariates in the model, a large nominal P-value will
lead to substantial overfitting. Most often a nominal
P-value of 5% is used for variable selection.

The choice of a ‘selection’ P-value depends on the
number of covariates and whether hypothesis gener-
ation is an important aim of the study. The mfp proce-
dure therefore allows to distinguish between covari-
ates of main interest and confounders by specifying
different selection levels for different covariates.

Fractional Polynomials

Suppose that we have an outcome variable, a sin-
gle continuous covariate, Z, and a suitable regres-
sion model relating them. Our starting point is the
straight line model, β1Z (for easier notation we ig-
nore the intercept, β0). Often this assumption is an
adequate description of the functional relationship,
but other functional forms must be investigated for
possible improvements in model fit. A simple ex-
tension of the straight line is a power transforma-
tion model, β1Zp. This model has often been used
by practitioners in an ad hoc way, utilising differ-
ent choices of p. We formalise the model slightly
by calling it a first-degree fractional polynomial or
FP1 function where the powers p are chosen from
a restricted set, S (Royston and Altman, 1994). For
pragmatic reasons, Royston and Altman (1994) sug-
gested S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, where Z0

denotes log(Z). No subsequent changes to S have
been proposed since then. The power transformation
set includes the ‘identiy’ transformation (p = 1), as
well as the reciprocal, logarithmic, square root and
square transformations. To fit an FP1 model each of
the eight values of p is tried. The best-fitting model
is defined as the one with the maximum likelihood
among these models.

Extension from one-term FP1 functions to the
more complex and flexible two-term FP2 functions
follows immediately. FP2 functions with powers
(p1, p2) include the formulations β1Zp1 + β2Zp2 and
β1Zp1 + β2Zp1 log(Z) if p2 = p1, the latter being
the so-called repeated-powers functions. The best fit
among the 36 (28 with p2 6= p1 and 8 with p2 = p1)
combinations of powers from S is defined as that
with the highest likelihood.

An FPm model of degree m, m = 1, 2, is consid-
ered to have 2m degrees of freedom (d.f.), 1 d.f. for
each parameter and 1 d.f. for each power. Because
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a restricted number of powers (only those from the
set S) are used, the value 2m is a slight over-estimate
of the effective number of d.f. (Royston and Altman,
1994). Defining the ‘deviance’ of a FP model as mi-
nus twice the maximised log likelihood, statistical
significance between FP models is assessed by using
the χ2 distribution.

Model selection

For choosing among FP models at a given signifi-
cance level of α, two procedures have been proposed
in the literature, a sequential selection procedure and
a closed testing selection procedure.

For the sequential selection procedure first a 2 d.f.
test at level α of the best-fitting second-degree FP,
FP2, against the best-fitting first-degree FP, FP1, is
performed. If the test is significant, the final model
is the best-fitting FP2. If the test is not significant, a
1 d.f. test at the α level of the best fitting FP1 against
a straight line follows. If the test is significant, the
final model is the best-fitting FP1. Otherwise, a 1 d.f.
test at the α level of a straight line against the model
omitting the covariate is performed. If the test is sig-
nificant, the final model is a straight line, otherwise
the covariate is omitted.

The closed testing selection procedure (denoted
RA2) was originally described in Ambler and Royston
(2001). It maintains approximately the correct Type I
error rate for each covariate tested.

For a specific covariate X the RA2 algorithm
works as follows:

1. Perform a 4 d.f. test at the α level of the best-
fitting FP2 against the null model. If the test
is not significant, drop X and stop, otherwise
continue.

2. Perform a 3 df test at the α level of the best-
fitting FP2 against a straight line. If the test
is not significant, stop (the final model is a
straight line), otherwise continue.

3. Perform a 2 df test at the α level of the best-
fitting FP2 against the best-fitting FP1. If the
test is significant, the final model is the best-
fitting FP2, otherwise the best-fitting FP1.

For the sequential selection procedure the actual
Type I error rate may exceed the nominal value when
the true relationship is a straight line. The procedure
tends to favour more complex models over simple
ones. For this reason the R implementation provides
only the RA2 procedure.

Multivariable Fractional Polynomi-
als

Modelling the joint effect of several covariates one
may wish to simplify the model, either by drop-
ping non-significant variables and/or by reducing
the complexity of FP functions fitted to continuous
covariates. A solution to finding a model includ-
ing FP terms was proposed by Royston and Altman
(1994) and refined by Sauerbrei and Royston (1999).
Instead of an exhaustive search an iterative algo-
rithm was recommended and termed the MFP proce-
dure. It combines backward elimination of variables
with a search for the best FP functions of continuous
covariates.

The order of covariates for the variable selection
procedure is determined by fitting a linear model
including all variables and dropping each variable
singly according to the first step of a conventional
backward elimination procedure. The values of the
corresponding test statistics are then used to order
the variables, from the most to the least ‘significant’.
Having imposed an order, each covariate is consid-
ered in turn. If a covariate is categorical or binary,
a standard likelihood ratio test is performed to de-
termine whether it should be dropped or not. If
a covariate is continuous, the FP model selection
procedure RA2 is applied to determine the best FP
or to eliminate the covariate. The procedure cycles
through the variables in the predetermined order un-
til the selected variables and FP functions do not
change any more.

Usage

A typical mfp model formula has the form response
∼ terms where response is the (numeric) response
vector and terms is a series of terms, usually sepa-
rated by + operators, which specifies a linear pre-
dictor for response and provided by the formula ar-
gument of the function call. Fractional polynomial
terms are indicated by fp.

For binomial models the response can also be
specified as a factor. If a Cox proportional hazards
model is required then the outcome need to be a sur-
vival object specified using the Surv() notation.

The argument family describes the error distri-
bution and link function to be used in the model.
This can be a character string naming a family func-
tion, a family function or the result of a call to a fam-
ily function. Actually linear, logistic, Poisson and
Cox regression models have been implemented.

The global argument alpha (default: 0.05) sets
the FP selection level to be used for all covariates.
The global variable selection level is set by argument
select (default: 1, corresponding to ‘no variable se-
lection’). These values can be changed for individual
covariates by using the fp function in the formula.
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The fp function in the formula description of the
model defines a fractional polynomial object for a
single input variable using arguments df, select,
alpha and scale for FP model selection. The df ar-
gument determines the maximum degree of the FP
model to be tested for the corresponding covariate by
its d.f. (default: 4, corresponding to an FP2 model).

The scale argument (default: TRUE) of the fp
function denotes the use of pre-transformation scal-
ing to avoid possible numerical problems.

Example

As an example we use the data from a clinical trial
for patients with node positive breast cancer from the
German Breast Cancer Study Group (GBSG). A to-
tal of 7 covariates were investigated. Complete data
on covariates and the survival times is available for
686 patients of the study. During a median follow-
up of about 5 years 299 events were observed for re-
currence free survival time (rfst). For more details
see Sauerbrei and Royston (1999) or references given
there. The results are computed using the mfp pack-
age, version 1.3.1.

The dataset GBSG which contains the data for the
set of 686 patients with node-positive breast cancer is
provided as example data set in the mfp package.

> data(GBSG)

The response variable is recurrence free survival
time (Surv(rfst, cens)). In the example data set
seven possible prognostic factors were given, of
which 5 are continuous, age of the patients in years
(age), tumor size in mm (tumsize), number of pos-
itive lymph nodes (posnodal), progesterone recep-
tor in fmol (prm), estrogen receptor in fmol (esm).
One more covariate is binary, menopausal status
(menostat), and one is ordered categorical with three
levels, tumor grade (tumgrad). Finally, the model has
to be adjusted for hormonal therapy (htreat).

According to Sauerbrei and Royston (1999) a pre-
transformation of the number of positive nodes was
applied,

> GBSG$nodetrans <- exp(-0.12 * GBSG$posnodal)

In addition a value of 1 was added to prm and esm
in the example data set GBSG to obtain positive val-
ues for these variables. To be compatible with other
applications of mfp on this data set (cp. Sauerbrei
et al., 2005) the data for age were divided by 50 and
tumor grade levels 2 and 3 were combined.

> GBSG$age50 <- GBSG$age/50

> levels(GBSG$tumgrad) <-

list("1"=1,"2 or 3"=c(2,3))

A Cox proportional hazards regression is the
standard approach to model the hazard of tumour
recurrence. Therefore the mfp model of recurrence
free survival on the initial set of 7 covariates, strati-
fied for hormone therapy, is fitted according to a Cox

regression model by a call to mfp() using family ar-
gument cox. The global FP selection level alpha as
well as the global variable selection level select are
set to 5%.

> f <- mfp(Surv(rfst, cens) ~ fp(age50)

+fp(nodetrans)+fp(prm)+fp(esm)+fp(tumsize)

+menostat+tumgrad+strata(htreat),

family = cox, method="breslow", alpha=0.05,

select=0.05, data = GBSG)

To be compatible with other implementations
of multivariable fractional polynomials in SAS and
Stata we use the Breslow method for tie handling.

Pre-transformation scaling was used for esm, prm
and tumsize.
> f$scale

shift scale

nodetrans 0 1

prm 0 100

tumgrad2 or 3 0 1

tumsize 0 10

menostat2 0 1

age50 0 1

esm 0 100

The final model is given as
> f

Call:
mfp(formula = Surv(rfst, cens) ~ fp(age50) + fp(nodetrans) +

+ fp(prm) + fp(esm) + fp(tumsize) + menostat + tumgrad +
strata(htreat), data = GBSG,
family = cox, method = "breslow",
alpha = 0.05, select = 0.05)

Fractional polynomials:
df.initial select alpha df.final power1 power2

nodetrans 4 0.05 0.05 1 1 .
prm 4 0.05 0.05 2 0.5 .
tumgrad2 or 3 1 0.05 0.05 1 1 .
tumsize 4 0.05 0.05 0 . .
menostat2 1 0.05 0.05 0 . .
age50 4 0.05 0.05 4 -2 -1
esm 4 0.05 0.05 0 . .

coef exp(coef) se(coef) z p
nodetrans.1 -1.9777 0.13839 0.2272 -8.70 0.0e+00
prm.1 -0.0572 0.94442 0.0111 -5.16 2.5e-07
tumgrad2 or 3.1 0.5134 1.67092 0.2495 2.06 4.0e-02
age50.1 2.4230 11.27964 0.4753 5.10 3.4e-07
age50.2 -5.3060 0.00496 1.1807 -4.49 7.0e-06

Likelihood ratio test=142 on 5 df, p=0 n= 686

Of the possible prognostic covariates esm,
menostat and tumsize were excluded from
the model (df.final=0). For covariates age
and prm nonlinear transformations were chosen
(df.final>1). Because of the pre-transformation
the function used for the number of positive lymph
nodes is also non-linear. For prm an FP1 was selected
with p = 0.5 corresponding to a square-root trans-
formation. For age an FP2 model was found with
p1 = −2, providing a new artificial variable age.1,
and p2 = −1, resulting in the new artificial variable
age.2.

If one had used a standard Cox regression
model with linear functional forms for the continu-
ous covariates the number of positive lymph nodes
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(nodetrans), progesterone receptor (prm) and tumor
grade (tumgrad) would have a statistical significant
effect at the 5% level.
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Figure 1: Estimated functional relationship between
age and the log relative hazard of recurrence-free sur-
vival. The linear function is derived from a standard
Cox regression model and is shown as solid black
line. The green line shows the functional form as
postulated by the mfp model. For both functions a
constant was subtracted from the estimated function
before plotting so that the median value of age yields
’y=0’ in both cases.

The multivariable fractional polynomial Cox re-
gression model additionally selected the FP2 trans-
formations of variable age50 (age50.1 and age50.2).
Instead of the untransformed (prm) variable an FP1
of prm was chosen and three variables were deleted.

In Figure 1 the estimated functional forms for age
resulting from the standard Cox regression model
and the multivariable fractional polynomial regres-
sion model are compared.

The result of the R implementation of mfp dif-
fers from the one using Stata and SAS by selection
of an FP2 transformation with powers -2 and -1 in-
stead of -2 and -0.5 (Sauerbrei et al. (2005)). Using the
actual implementation of the Cox regression model
in R (function ’coxph’ in package ”survival”, ver-
sion 2.18) to compare the results of the models in-
cluding the two different FP2 versions for age50 of
R and Stata resulted in nearly the same computed
log-likelihoods. The log-likelihood of the model in-
cluding age50 with powers -2 and -1 is -1528.086 as
compared to -1528.107 for the model including age50
with powers -2 and -0.5. The value fit of the result-
ing mfp object can be used for survival curve estima-
tion of the final model fit (2).
pf <- survfit(f$fit)

plot(pf, col=c("red","green"), xscale=365.25,

xlab="Time (years)",

ylab="Recurrence free survival rate")
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Figure 2: Predicted survival curves of the final mfp
model for the two strata defined by hormonal treat-
ment (red line: without hormonal treatment, green
line: with hormonal treatment).
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