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Abstract

Data analysts are often faced with many covariates and a suitable model for expla-
nation requires the selection of a subset of variables with a relevant influence on the
outcome. For continuous variables it is important to determine a suitable function which
fits the data well. We will introduce the basic concept and philosophy of the multivaria-
ble fractional polynomial (MFP) approach, which tackles both issues simultaneously. In
the context of comparing two treatments we will introduce MFPI as an extension to in-
vestigate for potential interactions with continuous covariates. The approach avoids well
known problems introduced by categorization. We will also introduce various opportu-
nities and challenges of fractional polynomial modelling in Big Data. Furthermore, we
will argue that treatment comparisons need to be based on well-designed randomized
trials. In general, observational data do not allow to derive an unbiased estimate of the
treatment effect, even if the sample size is very large.

Introduction

The number of covariates potentially included in a regression model is often too large and
a more parsimonious model may have advantages. Several variable selection strategies
(e.g. all-subset selection with various penalties for model complexity, or stepwise proce-
dures) have been proposed for a long time (Sauerbrei, 1999). As there are few analytical
studies about their properties, their usefulness is controversial. With continuous covariates
the usual assumption of linearity may be violated. The multivariable fractional polynomial
(MFP) approach simultaneously determines a functional form for continuous covariates and
deletes uninfluential covariates (Royston and Altman, 1994; Sauerbrei and Royston, 1999;
Sauerbrei et al., 2007a; Royston and Sauerbrei, 2008).

Continuous covariates are measured in most of the studies in the health sciences and MFP
has become a popular approach for multivariable model building. For variable selection it
uses backward elimination and for continuous covariates it checks whether a suitable (non-
linear) function from the class of fractional polynomials improves the fit significantly (Royston
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and Altman, 1994; Royston and Sauerbrei, 2008). The method also allows categorical and
binary covariates. Extensions of MFP have been developed to look for interactions between
continuous covariates and treatment (MFPI), between two continuous covariates (MFPIgen)
and for interactions with time (non-proportional hazards, MFPT) in a Cox model (Royston
and Sauerbrei, 2008; Sauerbrei et al., 2007b; Buchholz and Sauerbrei, 2011).

We have substantial experience in the analysis of real and simulated data with MFP, but
restricted to ’larger’ data sets. We will introduce key issues of MFP modelling and briefly
discuss some opportunities and challenges when using fractional polynomial modelling in
the context of ’big data’, a highly relevant topic for the future. The phrase ’big data’ is used
for many different types of very large amounts of automatically collected data. Unfortuna-
tely, the concept of big data is not well-defined, since an essentially arbitrary dividing line
seems to be imposed on the sample size, for no apparent reason. Nevertheless, the term
seems to have stuck. In a recent Editorial, David Hand (2016) stresses the importance of
distinguishing between two types of activity relating to big data. The first involves primarily
data manipulation: sorting, searching, matching, and so on. Examples include online route
finders and apps for updated status of bus and train traffic, with the associated issues ad-
dressed mostly by computer scientists and mathematicians. The second type of big data
activity seeks to go beyond the data at hand, with the ultimate goals being either prediction
of future data, or understanding of the mechanisms and processes that have generated the
collected data. Achieving these goals will rely primarily on state-of-the-art statistical and ma-
chine learning methods. In addition, the method of data collection is relevant; briefly we may
distinguish whether data come from a well-designed experiment (e.g. a randomized trial),
a systematic collection (e.g. cancer registry) or whether they are ’found’ data (e.g. internet
poll). For a discussion see Keiding and Lewis (2016).

In this paper we have the second type of data in mind and as an application we will discuss
key issues when comparing two treatments. Often, differences between effects of competing
treatments are relatively small, but nevertheless relevant for patients. We will argue that data
from a ’larger’ randomized trial is required and that data from observational studies, even if
the data set is ’Big’ (very large), would not help to provide an unbiased estimate of treatment
differences (Harford, 2014; Antes, 2015). We will also argue that the information from many
RCTs is not fully exploited and discuss that MFPI should play a prominent role to investigate
for potential interactions of a continuous covariate with treatment. Having ’Big Data’ in mind
and assuming that the selection of covariates and functional form for continuous covariates
are an important part of the analysis, we will discuss opportunities and challenges of an
analysis using MFP.

In this paper we have a ’larger’ data set in mind, thoughts about big data are postponed to
the specific subsection 6. In subsection 1 we discuss several key issues in variable selection.
This is followed by subsection 2 on handling continuous covariates and the introduction of
fractional polynomial modelling. The basic concept and philosophy of MFP modelling is intro-
duced in subsection 3, followed by a short subsection on MFPI, the extension to investigate
for interaction between a continuous and a binary covariate (subsection 4). MFPI can play
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an important role when comparing two treatments (subsection 5). Before giving concluding
remarks, in subsection 6 we discuss issues of MFP modelling in the context of big data. We
have extensively published on the methodology and therefore details will not be given. We
refer to the original papers, our book and the MFP website.

3.1 Model Building when Several Covariates are Available

In fitting regression models, data analysts are often faced with many covariates that may
have an influence on an outcome variable. Consensus is that subject matter knowledge
should generally guide model building, but it is often limited or at best fragile, making data-
dependent model building necessary (Harrell, 2001). If the number of covariates is large, a
parsimonious model involving a subset of the available covariates is often preferable (Sauer-
brei, 1999). An aim of the analysis is the selection of covariates with more than a negligible
influence on the outcome. In the health sciences the most popular methods for continuous,
binary and censored survival data outcomes are normal-errors (linear) regression, logistic
regression and Cox regression models. Issues and methods for variable selection are very
similar among the three models mentioned. Usually, methods for variable selection and
related issues have been developed and investigated for a normal-errors linear regression
model and the methods, or at least their basic ideas, are commonly transferred to generali-
zed linear models and to models for survival data. Sometimes additional problems, such as
the definition of residuals or equivalents of R2, exist. We refer to Andersen and Skovgaard
(2010) for a text providing a useful unified treatment of regression models for different types
of outcomes.

Relevant issues

In this part of subsection we assume that ’linearity’ is a suitable assumption for the effect
of a continuous covariate and our main emphasis is on models for explanation (interpreta-
tion). We have more traditional methods for variable selection (e.g. backward elimination) in
mind. There have been several recent developments in the literature on variable selection
but we know of no strong argument favoring replacement of backward elimination with anot-
her procedure in the MFP algorithm (see subsection 3). Some of our arguments are hardly
defensible for ’small’ sample sizes and high-dimensional data, such as -omics data. Such
situations are implicitly excluded. Under our assumptions we consider the following issues
as the most relevant to model selection: Aim (model for prediction or for explanation), model
complexity, model stability, incorporating the model uncertainty concept, selection bias and
shrinkage of regression coefficients as a potential way to correct for it. For more details see
our website http://mfp.imbi.uni-freiburg.de/.

Aim of the model and model complexity
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Many different aims are possible when developing a multivariable model and the specific
aim has an influence on the suitability of a chosen approach. For a detailed discussion
see section 2.4 in Royston and Sauerbrei (2008). In many analyses the most important
distinction is between models aiming to derive a suitable covariate and models aiming to
identify factors which seem to help explaining the value of an outcome. For a discussion
see the paper entitled ’To explain or to predict’ by Shmueli (2010). He illustrates that these
phrases mean different things in different disciplines and mentions relevant distinctions and
practical implications for explanatory and predictive modeling. For example, in the social
sciences the term explanatory model is used nearly exclusively for testing causal theory.
Although we agree with Shmueli that our approach to derive a model would be better called
descriptive modeling, we will proceed with the better known (in the health sciences) term
’explanatory model’.

For stepwise variable selection procedures, the significance level (to be chosen by the ana-
lyst) is the key user-adjustable setting that influences model complexity. For details on step-
wise procedures and a discussion of the close relationship between the significance level
and the information criteria AIC and BIC see section 2.6 in Royston and Sauerbrei (2008).
Deriving explanatory models is the main aim in this paper. There are several arguments that
simpler models are preferable for such situations (Sauerbrei, 1999; Royston and Sauerbrei,
2008 section 2.9.4).

Model complexity, model stability and model uncertainty

Model complexity, model stability and model uncertainty are three different issues of data-
dependent model building. However, they are closely related. A more complex model (in
this context, a model including more covariates) is usually less stable as it almost invaria-
bly includes several covariates which have only a ’weak’ effect on the outcome (Sauerbrei
and Schumacher, 1992; Sauerbrei et al., 2015). When selecting a specific model, the un-
certainty of the selection process is (usually) ignored. To improve models for prediction,
the model uncertainty concept was introduced some 20 years ago (Chatfield, 1995, Draper,
1995). A predictor and its variance are estimated by averaging predictors from many (unsta-
ble) models. Usually the Bayesian framework is used for model selection and assessment
of model uncertainty (Bayesian model averaging; Hoeting et al., 1999). Extending an ap-
proach by Buckland et al. (1997), Augustin et al. (2005) suggested using the bootstrap to
handle model uncertainty. In contrast to the Bayesian approach which uses Occam’s razor
to reduce the number of models, Augustin et al. (2005) proposed using a screening step to
eliminate covariates with at most a weak effect. Obviously, the number of models included in
the second part for model averaging is severely reduced. For a detailed illustration see the
example in Sauerbrei et al. (2015). In subsection 3 we will describe the MFP approach to
select covariates and functional relationships for continuous covariates. We have also con-
ducted some investigations in the context of function stability (Royston and Sauerbrei, 2003).

Variable selection and shrinkage
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Concerning approaches for variable selection, the situation is very confusing. Triggered by
the problem of identifying a small number of relevant covariates in a high-dimensional data,
many procedures have been proposed recently. However, the number of helpful comparisons
between strategies is limited. There is agreement that variable selection will cause biases in
estimates of regression parameters and many of the more recent strategies combine varia-
ble selection with shrinkage in a regularized approach. For an overview of techniques see
Hastie et al. (2009) and several issues are also discussed in Schumacher et al. (2012).
In the context of low-dimensional data van Houwelingen and Sauerbrei (2013) assessed
whether post-selection two-step approaches using global shrinkage proposed by van Hou-
welingen and Le Cessie (1990) or parameterwise shrinkage (PWSF, (Sauerbrei, 1999)) can
improve selected models. They also compared results to models derived with the LASSO
procedure (Tibshirani, 1996), probably the most popular approach to combine variable se-
lection and shrinkage in a one-step approach. Concerning prediction ability the performance
of backward elimination (BE) with a suitably chosen significance level was not worse com-
pared to the LASSO and BE models selected were much sparser, an important advantage
for interpretation and transportability. It could be shown that the PWSF approach compares
favourably to global shrinkage. It was summarized that BE followed by PWSF is a suitable
approach when variable selection is a key part of data analysis, provided that the amount of
information in the data is not ’too small’.

In the context of using the MFP procedure to derive a multivariable model data-dependently,
it was noted that regression parameter estimates of FP functions are biased and may need
to be shrunken (Sauerbrei and Royston, 1999). The PWSF approach was considered as one
potential way to handle this issue. However, for covariates which are either highly correlated
or associated with regard to contents, such as several parameters describing a nonlinear
FP2 function, the approach has weaknesses. For such cases the methodology was exten-
ded by so-called ’joint shrinkage factors’, a compromise between global and parameterwise
shrinkage (Dunkler et al., 2016).

3.2 Continuous Covariates

Continuous covariates are often encountered in life. We measure age, weight, blood pres-
sure and many other things. In medicine, such measurements are often used to assess risk
or prognosis or to select a therapy. However, the question of how best to extract useful in-
formation from continuous covariates is an important challenge (Rosenberg et al., 2003), in
the multivariable context interrelated with the selection of covariates for inclusion in a model.
In a short summary, topic group 2 of the STRATOS (STRengthening Analytical Thinking for
Observational Studies) initiative states (Sauerbrei et al., 2014):

“In practice, multivariable models are usually built through a combination of (i) a priori inclu-
sion of well-established ’predictors’ of the outcome of interest and (ii) a posteriori selection of
additional variables, based often on arbitrary, data-dependent procedures and criteria such
as statistical significance or goodness-of-fit measures. There is a consensus that all of the
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many suggested model building strategies have weaknesses (Miller, 2002) but opinions on
the relative advantages and disadvantages of particular strategies differ considerably. The
effects of continuous predictors are typically modeled by either categorizing them (which rai-
ses such issues as the number of categories, cutpoint values, implausibility of the resulting
step-function relationships, local biases, power loss, or invalidity of inference in case of data-
dependent cutpoints) (Greenland, 1995) or assuming linear relationships with the outcome,
possibly after a simple transformation (e.g. logarithmic). Often, however, the reasons for
choosing such conventional representation of continuous variables are not discussed and
the validity of the underlying assumptions is not assessed.

To address these limitations, statisticians have developed flexible modeling techniques ba-
sed on various types of smoothers, including fractional polynomials (Royston and Altman,
1994; Royston and Sauerbrei, 2008) and several ’flavors’ of splines. The latter include re-
stricted regression splines (Harrell, 2001; Boer, 2001), penalized regression splines (Wood,
2006) and smoothing splines (Hastie and Tibshirani, 1990). For multivariable analysis, these
smoothers have been incorporated in generalized additive models.”

To categorize or to model?

For continuous covariates, a simple and popular approach is to assume a linear effect, but
the linearity assumption may be questionable. To avoid this strong assumption, resear-
chers often apply cutpoints to categorize the covariate, implying regression models with
step functions. This simplifies the analysis and may or may not simplify interpretation of
results. It seems that the usual approach in clinical and psychological research is to di-
chotomize continuous covariates, whereas in epidemiological studies it is customary to cre-
ate several categories, often four or five, allowing investigation of a crude dose-response
relationship. However, categorization discards information and raises several critical is-
sues such as how many cutpoints to use and where to place them (Altman et al., 1994;
Royston et al., 2006). Sauerbrei and Royston (2010) illustrate several critical issues by in-
vestigating prognostic factors in patients with breast cancer. As a more suitable approach
to analysis, they propose to model continuous covariates with fractional polynomials (FP).
See Royston and Sauerbrei (2008) for a monograph on this topic and the related website
http://mfp.imbi.uni-freiburg.de/.

Fractional polynomials

Class of FP functions

The class of fractional polynomial (FP) functions is an extension of power transformations of
a covariate. For most applications FP1 and FP2 functions are sufficient.

FP1: β1xp1

FP2: β1xp1 +β2xp2
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Figure 18: Various shapes of FP2 functions with different power terms p1 and p2.

For the exponents p1 and p2 a set S={-2, -1, -0.5, 0, 0.5, 1, 2, 3}, with 0 = logx was pro-
posed. For p1 = p2 = p (’repeated powers’) an FP2 function is defined as β1xp +β2xp logx.
This defines 8 FP1 and 36 FP2 models. The values p1 = 1, p2 = 2 define the quadratic
function. The class of FP functions seems to be small, but it includes very different types of
shapes (Fig. 18). General FPm functions are well-defined and straightforward, but will not
be discussed here as they are rarely used. FP3 or more complex FP functions may improve
the fit in some cases (particularly in a univariate analysis), but in the multivariable context,
which is the main issue here, we are not aware of any relevant example. Occasionally they
also find a use as effective approximations to intractable mathematical functions (Royston
and Altman, 1997).

Selecting an FP function

A suitable function should fit the data well, and also be simple, interpretable and generally
usable. To assess whether a covariate has a significant effect, the FP function selection
procedure (FSP) starts by comparing the best fitting allowed FP (often FP2) function of
a continuous covariate x with the null model (Royston and Sauerbrei, 2008 section 4.10).
If significant, the procedure proceeds by comparing FP functions with a ’simple’ (usually
linear) default function. Using FSP the default function is often selected. More complex FP
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functions are chosen only if they fit the data much better (based on a significance criterion),
which implies that sample size (effective sample size in survival data) plays an important
role. Modifications are required in ’big data’, see subsection 6.

Before starting to select a suitable function, the analyst must decide on a nominal p-value (α)
and on the degree (m) of the most complex FP model allowed. Typical choices in medicine
are α = 0.05 and FP2 (m = 2). In the following we describe FSP when FP2 is chosen. It is
straightforward to adapt the procedure for use with other FP degrees. Based on minimizing
the deviance (minus twice the maximized log likelihood), the best FP1 and best FP2 function
are determined. The following test procedure assumes that the null distribution of the diffe-
rence in deviances between an FPm and an FP (m− 1) model is approximately central χ2

on two degrees of freedom. For details see section 4.9.1 of Royston and Sauerbrei (2008).
The FP function is determined for the variable x using the following closed test procedure:

1 Test the best FP2 model for x at the α significance level against the null model using
four d.f. If the test is not significant, stop, concluding that the effect of x is ’not signifi-
cant’ at the α level. Otherwise continue.

2 Test the best FP2 for x against the default (usually a linear function) at the α level using
three d.f. If the test is not significant, stop, the final model being the default. Otherwise
continue.

3 Test the best FP2 for x against the best FP1 at the α level using two d.f. FP2 selects
two power terms and estimates two corresponding parameters, therefore 4 d.f.; corre-
spondingly FP1 has 2 d.f., giving a difference of two d.f. If the test is not significant,
the final model is the best FP2, otherwise the final model is the best FP1. End of
procedure.

Note that the α level for the selection of the FP function can be different to the significance
level of backward elimination. If α = 1 in the latter then x is always selected and step 1 is
redundant. Using the flavor of a closed test procedure ensures that the overall type 1 error is
close to the nominal significance level. For some results concerning type 1 error and power
we refer to simulation studies described in section 4.10.5 of our book.

3.3 MFP: an Approach to Multivariable Model-building with Several
Continuous Covariates

MFP is an approach to multivariable model-building which retains continuous covariates as
continuous, finds non-linear functions if sufficiently supported by the data, and removes we-
akly influential covariates by backward elimination (BE). The main issues of the approach
arise from the two key components: variable selection with backward elimination and se-
lection of an FP function to model non-linearity.
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The MFP algorithm - basic concept

Like backward elimination, the MFP algorithm starts with all candidate covariates entered
as linear terms (the ’full model’) and investigates whether any covariates can be eliminated.
However, for each of the continuous covariates the FSP is used to check whether a non-
linear function fits the data significantly better than a linear function. After a first cycle some
covariates will often be eliminated and for some continuous covariates a better fitting non-
linear function may have been determined. The algorithm starts a second cycle, but the
new starting model now has fewer covariates (as some were eliminated) and perhaps non-
linear functions for some of the continuous covariates. In the second cycle all covariates
are reconsidered (even if they were not significant at the end of the first cycle) and the
FSP is used again to determine the ’best’ fitting FP function (it may be different because
other ’adjustment’ covariates are in the model). This yields the result of cycle 2 which is the
starting point for cycle 3. In most cases the model does not change anymore in cycle 3 or 4
and the algorithm stops with the final MFP model.

Important is the order of ’searching’ for model improvement by better fitting non-linear functi-
ons. Obviously, mismodelling the functional form of a covariate with a strong effect is more
critical than mismodelling the functional form of a covariate with a weak effect. The order
is determined by ascending p-values from likelihood ratio tests for elimination from the full
model. Covariates with a small p-value are considered first. Boxes 6.1 and 6.2 in Royston
and Sauerbrei (2008) illustrate the algorithm in an example. Most often 0.05 is used as the
significance criteria for both variable elimination and function selection, however, these two
important parameters for variable and function selection can (and should) be flexibly chosen
by the analyst. Depending on the aim of an analysis more or less stringent significance
criteria may be preferable.

MFP modelling - philosophy and related matters

For a detailed description of the algorithm and some relevant issues see Chapter 6 in Roys-
ton and Sauerbrei (2008). In the discussion of it, we consider in detail four relevant issues
(1 - Philosophy of MFP; 2- Function Complexity, Sample Size and Subject-Matter Know-
ledge; 3- Improving Robustness by Preliminary Covariate Transformation; 4- Conclusion and
Future). Our thoughts about these issues are summarized in a table entitled ’Towards recom-
mendations for model building by selection of variables and functional forms for continuous
predictors in observational studies, under the assumption of Tab 1.3.’ This table is adapted
from Sauerbrei et al. (2007a), where we expressed thoughts about our philosophy of MFP
modelling:

“Issues such as model stability, transportability and practical usefulness need more attention
in model development. The latter are all connected with the often neglected criterion of ex-
ternal validation. Increasing their importance will result in models that are built with the aim
to get the big picture right instead of optimizing specific aspects and ignoring others. With
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a good model building procedure, the analyst should be able to detect strong factors, strong
non-linearity for continuous variables, strong interactions between variables and strong non-
proportionality in survival models. With such a model one is less concerned about failing
to include variables with a weak effect, failing to detect weak interactions or failing to find
some minor curvature in a functional form of a continuous covariate. Such a model should
be interpretable, generalizable and transportable to other settings. In contrast to results from
spline techniques, which are often presented as a function plot, an FP function is a simple
formula allowing general usage. Our aims agree closely with the philosophy of MFP and its
extensions for interactions (Royston and Sauerbrei, 2003) and time-varying effects (Sauer-
brei et al., 2007b). Modifications that may improve the usefulness of MFP are combination
with shrinkage and a more systematic check for overlooked local curvature.”

In a large simulation study comparing MFP with various spline approaches, we provided
some evidence for the conclusions given in the table of recommendations’, but further simu-
lation studies are needed (Binder et al, 2013). It is planned to conduct them in topic group 2
of the STRATOS initiative ’Selection of variables and functional forms in multivariable analy-
sis’ (Sauerbrei et al, 2014).

3.4 Extension of MFP to Investigate for Interactions

Given the enormous amount of resources spent on conducting a large clinical trial, it is sur-
prising that greater efforts are not made to try to extract more information from clinical trials
data. In the context of potential interactions between continuous covariates and treatment,
we have argued for the use of MFPI (multivariable fractional polynomials - interaction) for
such investigations (Royston and Sauerbrei, 2004; Sauerbrei and Royston, 2007). Unfortu-
nately, dichotomization is still the ’standard’, even though most of the well-known problems
of categorization mentioned above transfer to analyses for interactions. The key ideas of
MFPI are: first, MFPI estimates for each treatment group a fractional polynomial function
representing the prognostic effect of the continuous covariate of interest, optionally adjus-
ting for other covariates. Second, the difference between the functions for the treatment
groups is calculated and tested for significance. The testing is done through an analysis of
interaction between treatment and the FP function. A plot of the difference (e.g., log ha-
zard ratio) against the covariate, together with a 95% CI, is termed a ’treatment-effect plot’.
A treatment-effect plot for a continuous covariate not interacting with treatment would be a
straight line parallel to the x-axis, whereas a treatment-covariate interaction would be indi-
cated by a non-constant line, often increasing or decreasing monotonically. For more details
see subsection 6 in our book (Royston and Sauerbrei, 2008). In a recent simulation study we
were able to illustrate striking advantages of MFPI over methods based on dichotomization
or categorization (Royston and Sauerbrei, 2013; Royston and Sauerbrei, 2014). Based on
these results, we slightly changed our recommendation for the most suitable approach (our
new default). For details see the website or the latter paper.
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3.5 Opportunities of MFPI when Comparing Treatments

By re-analyzing data from an MRC randomized trial in patients with renal cancer, we illus-
trated additional opportunities to investigate for interactions of a continuous covariate with
treatment (Royston et al., 2004). In Fig. 19 we show Kaplan-Meier estimates in all patients
and in patients defined by 4 subgroups based on white cell count (WCC) values. These
subgroups are motivated by the treatment effect function for WCC (top right). Using MFPI
we investigate ten continuous covariates as potential modifiers of the treatment effect. Nine
covariates did not exhibit any important interaction, but for WCC the test for interaction was
significant at the 1% level. We use Kaplan-Meier plots in subpopulations as check of the
derived treatment effect function.

The five plots of Kaplan-Meier estimates show that the proportional hazard assumption of
the Cox model is acceptable in all populations and we estimated treatment effects in each of
the groups. The estimated hazard ratio (HR: Interferon to MPA; 95% confidence interval) in
all patients is 0.75 (0.60 - 0.93), which clearly shows the benefit of interferon. However, in
subgroups defined by increasing values of WCC we observe increasing estimates agreeing
with the treatment effect function and the impression from the plots for subgroups (I: 0.53
(0.34 - 0.83), II: 0.69 (0.44 - 1.07), III: 0.89 (0.57 - 1.37), IV: 1.32 (0.85 - 2.05)).

There is a large effect favoring interferon in group I (very low WCC values). The advan-
tage disappears for patients with higher WCC values. Analyses in subgroups support the
estimated treatment effect function.

Concerning the interpretation of results from MFPI analyses, we need to distinguish bet-
ween prospectively planned analyses and a retrospectively conducted search for markers
which may have an influence on the effect of treatment. Results from a retrospective search
need to be seen as hypothesis generation, requiring validation in new data. For hypothesis
generation we recommend using small p-values (e.g. 0.01), otherwise larger p-values may
be acceptable. In any case, we strongly recommend checking estimated treatment effect
functions by conducting analyses in subgroups.

3.6 Analyzing Big Data with MFP - on Opportunities and Challenges

So far we have no experience analyzing ’Big Data’ with MFP or more generally with FP
methodology. In the following we will consider two very different ’big data’ situations and
point to potential opportunities and challenges when using FPs for the analysis.

Large(r) sample size

Having a large sample size offers many opportunities for MFP analyses but also raises se-
veral issues of our test-based FP function selection procedure. Obviously FSP needs to be
adapted because a very large sample size would (nearly) always result in selecting the most
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Figure 19: Plots of Kaplan-Meier estimates of overall survival probability for patients treated
with interferon (pale) or MPA (dark) and estimated treatment effect function (with 95% CI)
comparing the treatment effect dependent on white cell count (WCC), the only significant
covariate interacting with treatment (top right). The four Kaplan-Meier plots (middle and
bottom) show survival estimates in subgroups determined by WCC values.
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complex allowed FPm (typically FP2) function.

Careful consideration of whether FP2 functions should be allowed is one simple way to
handle this issue. For example, restriction to the FP1 class could be suitable if subject
matter knowledge provides a strong argument that a function should be monotonic. In that
case the best fitting transformation of the eight functions would be selected. In a similar way
FSP could be modified to select the best of the thirty-six FP2 functions if a non-monotonic
function would be suitable.

Another approach would be to use the area between curves (ABC) criteria to replace signi-
ficance tests in the FSP. ABC was proposed by Govindarajulu et al. (2007) to quantify the
distance between smoothed curves and later adapted to quantify the distance between two
curves estimating time-varying effects in the Cox model for survival data (ABCtime, Buchholz
et al., 2014). In a procedure similar to FSP, distances between best FP2, best FP1 and the
linear function could be considered. However, further work on a suitable metric to compare
two curves is needed. What is a relevant ABC value to conclude that the best FP2 fits ’sub-
stantially better’ than the linear function or the FP1 function? This issue needs experience in
real studies and in simulations.

In the context of MFP modelling it is also important to adapt the variable selection part of
MFP. One simple possibility is to choose the BIC (Bayes Information Criterion; Schwarz,
1978) as the criterion for model selection. The penalty constant of BIC is log(n), which may
help to restrain the selection of many significant covariates with a very small effect. BIC
or extremely small p-values such as 0.000001 may also be used in FSP for the selection
of an FP function. A different line would to try adapting the variable selection (backward
elimination) part by using ideas from the change-in-estimates approach (Greenland et al.,
1989). That may also help for categorical covariates, also needing adaption for the case of
very large sample sizes.

However, practical experience is needed to see whether these ideas are sufficient to adapt
the current MFP procedure to handle the problem of variable and function selection in very
large data sets. Very large sample sizes offer also many new possibilities for MFP met-
hodology. For potential interactions between two continuous covariates we have proposed
MFPIgen as an extension of MFPI (see section 7.11 in Royston and Sauerbrei, 2008). Ho-
wever, to conduct such an analysis a ’large’ sample size is needed. For ’very’ large sample
sizes an adaption as discussed above may be required.

Having very large datasets allows the analyst to partition the data and give the often neg-
lected model validation aspect much more weight. To get some ideas about external vali-
dation of a ’derivation’ model, data partitioning is often done, even with ’medium sized’ data
sets. In very large data sets natural partitions may be available (e.g. three hospitals with
large datasets each) and a partition could be possible without the severe disadvantage of
losing power, which is often low anyway. See van Houwelingen (2000) for related discussi-
ons. Related is the possibility of dividing the data into several (well-defined) subpopulations,
conduct an (MFP) analysis in each of them and summarize results in a meta-analysis. Using
’big data’ from nine SEER registries, we proposed a new approach for the meta-analysis of
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functions (Sauerbrei and Royston, 2011).

Very large number of covariates and small sample size

This situation is becoming more and more relevant in the health sciences, often called ’omics’
research. This term encompasses multiple molecular disciplines that involve characteriza-
tion of global sets of biological molecules such as DNAs, RNAs, proteins and metabolites
(IoM (Institute of Medicine), 2012). Typical sample sizes are between 100 and 500 (for sur-
vival data the effective sample size, the number of events, is often much smaller) and the
number of covariates range from several hundreds to several hundred thousand. Obviously,
deriving a ’suitable’ model is a challenge. ’Traditional’ statistical modelling approaches can-
not be used and many strategies have been adapted and developed during the last years.
Considering a preliminary covariate screening step, various methods of regularization and
the combination of variable selection and shrinkage play a key role. However, usually it is
assumed that the effect of a continuous covariate is linear. We could imagine that conside-
ration of the eight functions from the FP1 class could improve some of the models. After
a pre-selection of covariates (say selection of the top 500) it would be easy to consider (in
univariate analyses) whether any of the seven non-linear FP1 functions provides a much
better fit compared to a linear function. The p-value or the ABC criterion may be used for the
comparison.

To identify extreme values in omics data, Boulesteix et al. (2011) used a simple pre-
transformation, originally proposed to improve robustness of MFP models (Royston and Sau-
erbrei, 2007), and compared gene rankings derived from the original and the transformed
values. For some datasets they could identify striking differences in the gene rankings, cau-
sed by altering single observations. The approach could be extended to consider the best
FP1 function as the pre-transformation and an extension to multivariable models should be
possible.

Concluding Remarks

We have provided a brief overview of multivariable model building based on fractional poly-
nomials for modelling continuous covariates. We have concentrated on the MFP approach
which combines backward elimination as a strategy for variable selection with the selection
of a suitable function from a well-defined class of fractional polynomials. The aim of a mul-
tivariable model has a substantial influence on the suitability of a model building procedure
(Shmueli, 2010). Different strategies can produce very different models, but predictors from
different models are often (very) similar (Sauerbrei et al., 2015). In the health sciences mo-
dels for explanation play a more important role and we have such models in mind in our
discussion. For the variable selection part we have discussed model complexity as the key
issue and shrinkage as a potential way to correct for bias introduced by data dependent mo-
delling. The complexity of a BE model can be easily controlled by the significance level and
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we use it as the key parameter for both parts of MFP.

Comparing two (or more) treatment strategies is one of the most important investigations
in the health sciences. From a statistical point of view the popular phrase ’individualized
treatment’ implies interactions of treatment with ’several’ patient characteristics. So far inte-
ractions with a continuous covariate are usually investigated by categorizing (dichotomizing)
the continuous covariate and investigate for treatment differences in subgroups. In the con-
text of prognostic factors, risk factors and many others, the severe disadvantages introduced
by categorization have been well known for many years (Altman et al., 1994, Royston et al.,
2006). Obviously, most of the problems transfer to models investigating for interactions. For
a more detailed discussion see (Hingorani et al., 2013). One of their recommendations reads
“Standards in statistical analysis of prognosis research should be developed which address
the multiple current limitations. In particular, continuous variables should be analysed on
their continuous scale and non-linear relationships evaluated as appropriate.”

The MFP procedure was extended to MFPI as a more suitable way to investigate for inte-
ractions between a binary treatment (extension for categorical covariates are straightforward)
and a continuous patients characteristic. In an example we have demonstrated that MFPI
analyses can help to identify prognostic factors which interact with treatment, in some areas
in medicine they are called predictive factors. To report relevant details of MFP and MFPI
analyses is straightforward, another important factor of our approaches. The importance of
transparent reporting and reproducible research has become a key issue in medical rese-
arch. As software for MFP and MFPI is generally available (originally all routines have been
programmed by Patrick Royston in Stata, for details see the website) it should be possible to
reproduce an analysis, provided the data are publicly available.

So far we have no experiences using MFP and MFPI in the context of ’Big Data’. We have
outlined some potential chances and problems in using our approaches. However, the key
issues depend on the specific problem and the way data were collected. In the health scien-
ces there are many promises related to ’Big Data’ but it is obvious that more data will not
solve every problem (Antes, 2015). Very large sample sizes can be helpful to reduce the
random error and increase power, but potential biases are the more relevant in many ana-
lyses. Consequently, for investigations to compare treatments and to search for treatment
modifying factors, we have used the data from a randomized trial. Concerning data qua-
lity, Hand (2016) points out that ’large does not necessarily mean good, useful, valuable
or interesting. Big does not necessarily mean accurate or comprehensive’. With this short
overview we aim to illustrate that fractional polynomial methodology can be used sensibly for
many analyses requiring modelling of continuous covariates.
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